查看“WikiEdge:ArXiv-1904.12761”的源代码
←
WikiEdge:ArXiv-1904.12761
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
* '''标题''':The graphs behind Reuleaux polyhedra * '''中文标题''':Reuleaux多面体背后的图形 * '''发布日期''':2019-04-29 15:06:13+00:00 * '''作者''':Luis Montejano, Eric Pauli, Miguel Raggi, Edgardo Roldán-Pensado * '''分类''':cs.CG, math.CO *'''原文链接''':http://arxiv.org/abs/1904.12761v1 '''摘要''':本文研究了由Reuleaux多面体产生的图。这样的图必须是平面的,3连通的,且强自对偶的。我们研究了这些条件何时足够的问题。 如果$G$是具有同构$\tau : G \to G^*$的图(其中$G^*$是唯一的对偶图),度量映射是一个映射$\eta : V(G) \to \mathbb R^3$,使得$\eta(G)$的直径为1,对于每一对顶点$(u,v)$,只要$u\in \tau(v)$,我们就有dist$(\eta(u),\eta(v)) = 1$。如果$\eta$是单射,它被称为度量嵌入。注意,度量嵌入产生了一个Reuleaux多面体。 我们的贡献有两方面:首先,我们证明任何平面的,3连通的,强自对偶的图都有一个度量映射,通过证明直径图(其顶点是$V(G)$,其边是对$(u,v)$,只要$u\in \tau(v)$)的色数最多为4,这意味着存在一个度量映射到四面体。此外,我们使用Lov\'asz邻域复杂定理在代数拓扑中证明直径图的色数正好是4。 其次,我们开发了算法,使我们能够获得所有这样的图,顶点数最多为14。此外,我们为每一个这样的图数值构造度量嵌入。从定理和这个计算证据,我们推测每一个这样的图都可以作为一个Reuleaux多面体在$\mathbb R^3$中实现。 在之前的工作中,第一作者和最后一作者描述了一种从Reuleaux多面体构造常宽体的方法。因此,从本质上讲,我们也构造了数百个新的常宽体的例子。 这与V\'azsonyi的问题,以及Blaschke-Lebesgue的问题有关。
返回
WikiEdge:ArXiv-1904.12761
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息