查看“WikiEdge:ArXiv-2109.06962”的源代码
←
WikiEdge:ArXiv-2109.06962
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
* '''标题''':A doubly monotone flow for constant width bodies in $\mathbb{R}^3$ * '''中文标题''':在$\mathbb{R}^3$中的等宽体的双单调流 * '''发布日期''':2021-09-14 20:46:37+00:00 * '''作者''':Ryan Hynd * '''分类''':math.FA *'''原文链接''':http://arxiv.org/abs/2109.06962v1 '''摘要''':我们在三维欧几里得空间的常宽体空间中引入了一种流动,该流动在时间增加的同时,增加了体积并减小了形状的外接半径。从任何初始的常宽图形开始,我们证明了流动存在于所有正时间,并且随着时间趋向于正无穷大,它收敛于一个封闭的球体。我们还预期这种流动对于负时间的研究会很有趣,并且它将提供一种机制来减少常宽体的体积并增加其外接半径。 == 问题与动机 == 作者的研究问题包括: * 如何在[[三维欧几里得空间]]中定义一个同时增加体积和减小外接圆半径的[[恒宽体]]流? * 从任何初始恒宽体开始,流是否对所有正时间存在,并且当时间趋于正无穷时,是否会收敛到一个闭球? * 通过逆转时间,流的极限形状是否存在,并且是否能够提供对最小体积恒宽体和具有最大外接圆半径的恒宽体之间关系的洞察? * 如何发展一种方法来研究恒宽体的体积最小化问题,特别是在三维空间中? * 如何证明在三维空间中,体积最小化的恒宽体存在,并且它们是否具有最大的外接圆半径?
返回
WikiEdge:ArXiv-2109.06962
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息