查看“WikiEdge:ArXiv-2109.06962”的源代码
←
WikiEdge:ArXiv-2109.06962
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
* '''标题''':A doubly monotone flow for constant width bodies in $\mathbb{R}^3$ * '''中文标题''':$\mathbb{R}^3$中常宽体的双单调流 * '''发布日期''':2021-09-14 20:46:37+00:00 * '''作者''':Ryan Hynd * '''分类''':math.FA *'''原文链接''':http://arxiv.org/abs/2109.06962v1 '''摘要''':我们在三维欧几里得空间的等宽体空间中引入了一种流动,该流动随着时间的增加同时增加体积并减小形状的外接半径。从任何初始的等宽图形开始,我们证明了流动对所有正时间存在,并且随着时间趋向正无穷大,流动将收敛于一个闭球。我们还预期这种流动对于负时间的研究也很有趣,并且它将提供一种机制来减小等宽体的体积并增加其外接半径。 == 问题与动机 == 作者的研究问题包括: * 如何在[[三维欧几里得空间]]中定义一个同时增加体积和减小外接圆半径的[[常宽体]]流? * 从任何初始常宽体开始,流是否存在于所有正时间,并且随着时间趋向正无穷,是否会收敛到[[闭球]]? * 通过逆转时间,流的极限形状是否存在,并且是否能提供对最小体积常宽体和具有最大外接圆半径的常宽体之间关系的洞察?
返回
WikiEdge:ArXiv-2109.06962
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息