查看“WikiEdge:ArXiv速递/2025-03-04”的源代码
←
WikiEdge:ArXiv速递/2025-03-04
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
== 摘要 == * '''原文标题''':The subpath number of cactus graphs * '''中文标题''':仙人掌图的子路径数 * '''发布日期''':2025-03-04 14:55:49+00:00 * '''作者''':Martin Knor, Jelena Sedlar, Riste Škrekovski, Yu Yang * '''分类''':math.CO, 05C30, 05C38 *'''原文链接''':http://arxiv.org/abs/2503.02683v1 '''原文摘要''':The subpath number of a graph G is defined as the total number of subpaths in G, and it is closely related to the number of subtrees, a well-studied topic in graph theory. This paper is a continuation of our previous paper [5], where we investigated the subpath number and identified extremal graphs within the classes of trees, unicyclic graphs, bipartite graphs, and cycle chains. Here, we focus on the subpath number of cactus graphs and characterize all maximal and minimal cacti with n vertices and k cycles. We prove that maximal cacti are cycle chains in which all interior cycles are triangles, while the two end-cycles differ in length by at most one. In contrast, minimal cacti consist of k triangles, all sharing a common vertex, with the remaining vertices forming a tree attached to this joint vertex. By comparing extremal cacti with respect to the subpath number to those that are extremal for the subtree number and the Wiener index, we demonstrate that the subpath number does not correlate with either of these quantities, as their corresponding extremal graphs differ. '''中文摘要''':[[图]]的[[子路径数]]定义为图中所有子路径的总数,它与[[子树数]]密切相关,后者是[[图论]]中一个被广泛研究的主题。本文是我们之前论文[5]的延续,在那篇论文中我们研究了子路径数,并在[[树]]、[[单环图]]、[[二分图]]和[[环链]]等图类中识别了[[极值图]]。本文中,我们专注于[[仙人掌图]]的子路径数,并刻画了所有具有n个顶点和k个环的极大和极小仙人掌图。我们证明了极大仙人掌图是环链,其中所有内部环都是[[三角形]],而两个端环的长度最多相差一。相反,极小仙人掌图由k个三角形组成,这些三角形共享一个公共顶点,其余顶点形成一个附着于该公共顶点的树。通过比较子路径数的极值仙人掌图与子树数和[[维纳指数]]的极值图,我们证明了子路径数与这两个量不相关,因为它们的极值图不同。
返回
WikiEdge:ArXiv速递/2025-03-04
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息