查看“WikiEdge:ArXiv-2409.06325v1/abs”的源代码
←
WikiEdge:ArXiv-2409.06325v1/abs
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
<div style="float: right;">[{{fullurl:WikiEdge:ArXiv-2409.06325v1/abs|action=edit}} 编辑]</div> * '''标题''':Non-exchangeable networks of integrate-and-fire neurons: spatially-extended mean-field limit of the empirical measure * '''中文标题''':非可交换的积分-发放神经元网络:经验测度的空间扩展平均场极限 * '''发布日期''':2024-09-10T08:29:49+00:00 * '''作者''':Pierre-Emmanuel Jabin, Valentin Schmutz, Datong Zhou * '''分类''':math.PR, math.AP, q-bio.NC * '''原文链接''':http://arxiv.org/abs/2409.06325v1 '''摘要''':交换性或空间结构网络中 $N$ 个相互作用的随机[[神经元]]的动态可以通过均场极限 $N\to\infty$ 下的确定性种群方程来描述,当[[突触]]权重按 $O(1/N)$ 的比例缩放时。这种渐近行为在几项工作中得到了证明,但一个普遍的问题仍然没有答案:仅仅 $O(1/N)$ 的突触权重缩放是否足以保证网络动态收敛到确定性种群方程,即使网络不被假设为交换性或空间结构?在本研究中,我们考虑具有任意突触权重且仅满足 $O(1/N)$ 缩放条件的随机[[积分-发火]]神经元网络。借用[[稠密图]]极限([[图论]])的结果,我们证明,当 $N\to\infty$ 时,经过提取一个子序列,神经元膜电位的经验测度收敛到一个空间扩展的均场偏微分方程([[PDE]])的解。我们的证明需要超越标准混沌传播方法的分析技术。特别地,我们引入一个依赖于稠密图极限核的弱度量,并展示如何通过沿着与空间扩展均场 PDE 相关的双向反向方程传播极限核的正则性来获得初始数据的弱收敛。总体而言,这一结果促使我们重新解读空间扩展种群方程为具有 $O(1/N)$ 突触权重缩放的神经元网络的普遍均场极限。
返回
WikiEdge:ArXiv-2409.06325v1/abs
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息