查看“WikiEdge:ArXiv-2409.06325v1/methods”的源代码
←
WikiEdge:ArXiv-2409.06325v1/methods
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
<div style="float: right;">[{{fullurl:WikiEdge:ArXiv-2409.06325v1/methods|action=edit}} 编辑]</div> 这篇论文的工作部分详细介绍了如何研究[[非交换网络]]的动态行为,特别是通过[[均场极限]]来分析。以下是这部分的主要内容: # '''非交换网络模型''': #* 定义了[[非交换网络模型]],即网络中的神经元通过具有任意连接权重的突触相互连接,这些权重满足O(1/N)的缩放条件。 # '''均场极限理论''': #* 利用[[均场极限理论]]来研究网络中神经元的动态行为,特别是当网络规模N趋向于无穷大时,网络动态如何收敛到确定性的群体方程。 # '''图极限理论(Graphon Theory)''': #* 引入了[[图极限理论]],特别是[[图on]]的概念,来分析非交换网络的连接权重的极限行为。通过图极限理论,可以证明网络动态在均场极限下会收敛到一个具有空间扩展的[[均场偏微分方程]](PDE)。 # '''分析技术''': #* 采用了超越标准混沌传播方法的分析技术,包括引入依赖于图极限核的弱度量,以及通过与空间扩展均场PDE相关的对偶后向方程传播初始数据的规律性。 # '''主要结果''': #* 证明了在均场极限下,非交换网络的神经元膜电位的经验测度会收敛到空间扩展均场PDE的解。这一结果表明,即使在没有明确空间结构的网络中,O(1/N)的突触权重缩放也足以产生具有空间结构的群体动态。
返回
WikiEdge:ArXiv-2409.06325v1/methods
。
导航菜单
个人工具
创建账号
登录
命名空间
项目页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息