WikiEdge:ArXiv-1801.01161:修订间差异
跳转到导航
跳转到搜索
Saved page by David |
Updated page by David |
||
第6行: | 第6行: | ||
*'''原文链接''':http://arxiv.org/abs/1801.01161v1 | *'''原文链接''':http://arxiv.org/abs/1801.01161v1 | ||
'''摘要''':一个 $d$ 维球体 $S^d$ 的两个不同且非对立的半球 $G$ 和 $H$ 的交集 $L$ 被称为弓形。我们将 $L$ 的厚度定义为界定 $L$ 的 $(d-1)$ 维半球的中心的距离。对于支持一个球形凸体 $C \subset S^d$ 的半球 $G$,我们定义 ${\rm width}_G(C)$ 为包含 $C$ 的形式为 $G \cap H$ 的最窄弓形或弓形的厚度。如果对于每个支持 $C$ 的半球 $G$,${\rm width}_G(C) =w$,我们就说 $C$ 是一个常宽度为 $w$ 的体。我们展示了这些体的属性。特别地,我们证明了任何在 $S^d$ 上的常宽度为 $w$ 的球形体 $C$ 的直径是 $w$,并且如果 $w < \frac{\pi}{2}$,那么 $C$ 是严格凸的。此外,我们正在检查常宽度和常直径的球形体何时重合。 | '''摘要''':一个 $d$ 维球体 $S^d$ 的两个不同且非对立的半球 $G$ 和 $H$ 的交集 $L$ 被称为弓形。我们将 $L$ 的厚度定义为界定 $L$ 的 $(d-1)$ 维半球的中心的距离。对于支持一个球形凸体 $C \subset S^d$ 的半球 $G$,我们定义 ${\rm width}_G(C)$ 为包含 $C$ 的形式为 $G \cap H$ 的最窄弓形或弓形的厚度。如果对于每个支持 $C$ 的半球 $G$,${\rm width}_G(C) =w$,我们就说 $C$ 是一个常宽度为 $w$ 的体。我们展示了这些体的属性。特别地,我们证明了任何在 $S^d$ 上的常宽度为 $w$ 的球形体 $C$ 的直径是 $w$,并且如果 $w < \frac{\pi}{2}$,那么 $C$ 是严格凸的。此外,我们正在检查常宽度和常直径的球形体何时重合。 | ||
== 问题与动机 == | |||
作者的研究问题包括: | |||
* 如何定义和理解在\[ [[S^d]] \]上的[[常宽球体]]? | |||
* 如何确定一个[[球体]]是否具有常宽,并且其常宽是多少? | |||
* [[常宽球体]]的[[直径]]与其常宽之间有何关系? | |||
* [[常宽球体]]是否一定是[[严格凸]]的? | |||
* [[常宽球体]]和[[常直径球体]]之间有何联系? | |||
* 在\[ [[S^d]] \]上,[[常宽球体]]和[[常直径球体]]是否等价? |
2024年9月28日 (六) 11:05的版本
- 标题:Spherical bodies of constant width
- 中文标题:常宽度的球形体
- 发布日期:2018-01-03 20:44:24+00:00
- 作者:Marek Lassak, Michał Musielak
- 分类:math.MG, 52A55
- 原文链接:http://arxiv.org/abs/1801.01161v1
摘要:一个 $d$ 维球体 $S^d$ 的两个不同且非对立的半球 $G$ 和 $H$ 的交集 $L$ 被称为弓形。我们将 $L$ 的厚度定义为界定 $L$ 的 $(d-1)$ 维半球的中心的距离。对于支持一个球形凸体 $C \subset S^d$ 的半球 $G$,我们定义 ${\rm width}_G(C)$ 为包含 $C$ 的形式为 $G \cap H$ 的最窄弓形或弓形的厚度。如果对于每个支持 $C$ 的半球 $G$,${\rm width}_G(C) =w$,我们就说 $C$ 是一个常宽度为 $w$ 的体。我们展示了这些体的属性。特别地,我们证明了任何在 $S^d$ 上的常宽度为 $w$ 的球形体 $C$ 的直径是 $w$,并且如果 $w < \frac{\pi}{2}$,那么 $C$ 是严格凸的。此外,我们正在检查常宽度和常直径的球形体何时重合。
问题与动机
作者的研究问题包括: