WikiEdge:ArXiv-1801.01161
- 标题:Spherical bodies of constant width
- 中文标题:常宽度的球形体
- 发布日期:2018-01-03 20:44:24+00:00
- 作者:Marek Lassak, Michał Musielak
- 分类:math.MG, 52A55
- 原文链接:http://arxiv.org/abs/1801.01161v1
摘要:一个 $d$ 维球体 $S^d$ 的两个不同且非对立的半球 $G$ 和 $H$ 的交集 $L$ 被称为弓形。我们将 $L$ 的厚度定义为界定 $L$ 的 $(d-1)$ 维半球的中心的距离。对于支持一个球形凸体 $C \subset S^d$ 的半球 $G$,我们定义 ${\rm width}_G(C)$ 为包含 $C$ 的形式为 $G \cap H$ 的最窄弓形或弓形的厚度。如果对于每个支持 $C$ 的半球 $G$,${\rm width}_G(C) =w$,我们就说 $C$ 是一个常宽度为 $w$ 的体。我们展示了这些体的属性。特别地,我们证明了任何在 $S^d$ 上的常宽度为 $w$ 的球形体 $C$ 的直径是 $w$,并且如果 $w < \frac{\pi}{2}$,那么 $C$ 是严格凸的。此外,我们正在检查常宽度和常直径的球形体何时重合。