WikiEdge:ArXiv-1904.12761

出自WikiEdge
於 2024年9月28日 (六) 11:16 由 David對話 | 貢獻 所做的修訂 (Saved page by David)
(差異) ←上個修訂 | 最新修訂 (差異) | 下個修訂→ (差異)
跳至導覽 跳至搜尋
  • 標題:The graphs behind Reuleaux polyhedra
  • 中文標題:Reuleaux多面體背後的圖形
  • 發佈日期:2019-04-29 15:06:13+00:00
  • 作者:Luis Montejano, Eric Pauli, Miguel Raggi, Edgardo Roldán-Pensado
  • 分類:cs.CG, math.CO
  • 原文連結http://arxiv.org/abs/1904.12761v1

摘要:本文研究了由Reuleaux多面體產生的圖。這樣的圖必須是平面的,3連通的,且強自對偶的。我們研究了這些條件何時足夠的問題。 如果$G$是具有同構$\tau : G \to G^*$的圖(其中$G^*$是唯一的對偶圖),度量映射是一個映射$\eta : V(G) \to \mathbb R^3$,使得$\eta(G)$的直徑為1,對於每一對頂點$(u,v)$,只要$u\in \tau(v)$,我們就有dist$(\eta(u),\eta(v)) = 1$。如果$\eta$是單射,它被稱為度量嵌入。注意,度量嵌入產生了一個Reuleaux多面體。 我們的貢獻有兩方面:首先,我們證明任何平面的,3連通的,強自對偶的圖都有一個度量映射,通過證明直徑圖(其頂點是$V(G)$,其邊是對$(u,v)$,只要$u\in \tau(v)$)的色數最多為4,這意味着存在一個度量映射到四面體。此外,我們使用Lov\'asz鄰域複雜定理在代數拓撲中證明直徑圖的色數正好是4。 其次,我們開發了算法,使我們能夠獲得所有這樣的圖,頂點數最多為14。此外,我們為每一個這樣的圖數值構造度量嵌入。從定理和這個計算證據,我們推測每一個這樣的圖都可以作為一個Reuleaux多面體在$\mathbb R^3$中實現。 在之前的工作中,第一作者和最後一作者描述了一種從Reuleaux多面體構造常寬體的方法。因此,從本質上講,我們也構造了數百個新的常寬體的例子。 這與V\'azsonyi的問題,以及Blaschke-Lebesgue的問題有關。